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1Executive Summary

Overview 
This executive summary presents an overview of the 

process and initial findings of a systematic review and 

meta-analysis of the literature on computer simulations for 

K–12 science, technology, engineering, and mathematics 

(STEM) learning topics. Both quantitative and qualitative 

research studies on the effects of simulation in STEM 

were reviewed. Those that reported effect size measures 

or the data to calculate effect sizes were included in the 

meta-analysis. Important moderating factors related 

to simulation design, assessment, implementation, and 

study quality were coded, categorized, and analyzed for 

all the articles. 

Two research questions guided the review and meta-

analysis: 

1.  What is the difference in outcome measures between 

K–12 students who receive simulations as a form of 

instruction and K–12 students who receive some other 

kind of instructional treatment? 

2.  What is the difference in outcome measures between 

K–12 students who receive simulations that are 

supplemented or modified with some other form of 

instructional treatment (e.g., simulation plus scaffolding) 

and simulations without modifications? 

Highlighted here are the important preliminary findings 

of the study thus far. 

Background

With the rise in computing and lowering of computer 

costs has been an increase in the use of simulations. A 

simulation, for the purposes of this study, is a computer-

based interactive environment with an underlying model. 

In the STEM field in particular, real equipment can be 

difficult to obtain, so simulations enable students to 

experience phenomena they normally would not be able 

to experience firsthand. For example, simulations can 

take the place of laboratory equipment that might be too 

expensive or dangerous to have in a school. Simulations 

can also be used to explore phenomena that occur over 

long or extremely short time periods in a way that can 

easily fit into a class period. With simulations, students can 

also manipulate variables and see the results of multiple 

experiments without having to actually replicate them. 

(See Quellmalz & Pellegrino, 2009, for a review of the use 

of simulations in K–12 settings and the affordances of 

simulations that can affect student outcomes.) 

In view of these benefits, it is believed that using 

simulations in the classroom can help improve learning. 

Several literature reviews (e.g., Scalise et al., 2011; Smetana 

& Bell, 2012) have examined whether and how simulations 

aid the improvement of student learning. However, this 

literature has not been quantitatively and systematically 

analyzed to determine whether simulations do in fact 

have an effect on student learning.

Executive Summary
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In the summer of 2012, the Bill & Melinda Gates Foundation, 

in cooperation with the MacArthur Foundation, made 

a significant investment to establish and support the 

Games Assessment and Innovation Lab (GlassLab), which 

includes top game developers, assessment experts, and 

researchers from multiple fields. The goal of GlassLab 

is to transform learning and formative assessment 

through digital games. During the planning stages of the 

investment, the program was divided into two teams — an 

investment in a program team (GLASSLab) and a second 

investment in a research team (GLASSLab-Research) — to 

mitigate conflict of interest and guarantee independent 

validation of assessments developed by the program. It 

was determined by all those associated with GlassLab 

that the GlassLab development team would design 

and develop state-of-the-art game-based assessments. 

Independently, GlassLab-Research would conduct 

research on the qualities, features, validity, reliability, and 

effectiveness of the games and assessments that are 

embedded within the gaming environments produced 

by GlassLab. The meta-analysis and systematic review of 

the simulation literature described in this report is part of 

the larger GlassLab-Research project.

Defining a Simulation

The first goals of this project were to develop a working definition of simulation and to determine how 

simulations differ from other computer-based learning tools. The research team recognized that a continuum 

exists, with basic computer-based visualizations or animations at one end and complex video games at the 

other. We focused solely on the middle area, computer-based simulations that are neither simple visualizations 

nor involved games. To define this continuum further, the team made two important distinctions. 

The first was to differentiate a simulation from a game. 1 We defined a game as having clear goal states and a 

built-in reward system (such as points or currency) tied to these goal states. For the meta-analysis, a computer-

based tool was classified as a game if the user needed to reach levels or achievements in order to progress. 

Comparatively, a simulation was something that allowed users to be more focused on a specific phenomenon 

or activity than on achieving non-learning-based goals. 

The other distinction was between a simulation and a visualization. This distinction hinges on the important 

concept of interaction with a scientific model. Simulations, as defined here, must be constructed with an 

underlying model that is based on some real-world behavior or natural/scientific phenomena (such as models 

of the ecosystem or simulated animal dissections). The important criterion is that the simulation include some 

interactivity on the part of the user, centered on inputs and outputs of the model. Otherwise, the tool was labeled 

as a visualization rather than a simulation.

1  Another research group is performing a meta-analysis on games for learning (Clark, Tanner-Smith, Killingsworth, & 

Bellamy, 2013) as part of the larger GLASSLab-Research project. The game/simulation boundary resulted from a discussion 

between this group and our team to ensure little overlap or gap existed between our searches. For example, virtual worlds 

fell along the boundary between simulations and games, and the two groups decided that they should be part of the 

simulation meta-analysis.
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Other Extant  
Literature Reviews

Reviews exist of simulations or computer-based tools that 

help students learn various STEM concepts. Some of them 

are focused on a very narrow range of simulation studies 

or on overall trends of the findings of these studies, but 

none conducted a comprehensive quantitative meta-

analysis. For example, in a recent review Smetana and Bell 

(2012) looked at computer simulations that are meant 

to support science instruction and learning. They found 

that most (49 of 61) studies showed positive impacts of 

the use of simulations. Although the studies discussed 

are thoroughly explained and categorized, the search 

procedures were not very well documented, and our 

research team identified many key researchers and 

articles as missing from the review. 

Another recent review (Scalise et al., 2011) also examined 

learning through science simulations. This review was on 

software for grades 6–12, particularly virtual laboratory 

simulations. Another review (Clark, Nelson, Sengupta, & 

D’Angelo, 2009) looked at science learning gains from 

both simulations and games. This paper mostly described 

available simulations/games and overall findings from 

studies and reported details in a few select areas.

None of these reviews were proper meta-analyses where 

effect sizes across a series of studies were calculated and 

compared. The study described in this report includes a 

meta-analysis and is building on these previous reviews 

while taking on additional challenges. We are examining 

not only the effectiveness of simulations for STEM learning, 

but also the features of simulations that contribute to 

learning gains, the types of research and study designs 

that are most effective for determining these gains, 

any moderating variables that influence learning gains, 

and details of the assessments and measures used to 

determine learning gains. Some of these factors are 

included in a formal quantitative meta-analysis (described 

in this summary) whereas others are the subject of a more 

detailed systematic qualitative description and review 

(forthcoming in the third quarter of 2013). 

The preliminary study results presented here provide a 

look at the factors that influence learning science and 

engineering in computer-based simulations. The final 

report will include more details on these factors as well as 

implications for how to design and build these simulations 

and how to assess learning in these environments.

Meta-Analysis

A meta-analysis is the systematic synthesis of quantitative 

results from a collection of studies on a given topic 

(Borenstein, Hedges, Higgins, & Rothstein, 2009). Many 

terms have been used to describe literature reviews, such 

as research synthesis, research reviews, and narrative 

reviews (Cooper, 2010). While some of these terms are 

used interchangeably with meta-analysis (Cooper favors 

research synthesis), what sets a meta-analysis apart from 

other literature reviews is the quantitative and systematic 

nature of the data collection and analysis.

Part of the systematic approach in a meta-analysis is to 

document the decisions that are being made about the 

collection of the articles and the steps of the analysis. 

This allows for the study to be replicated. The approach 

also calls for the specification of the research questions 

guiding the analysis because two researchers examining 

the same set of articles may be asking different questions 

and thus may arrive at different results. Another part 

of being systematic in the approach is to help ensure 

that articles are collected and reviewed in a carefully 

organized manner to make sure the study is as inclusive 

as possible (Borenstein et al., 2009). In a meta-analysis 

articles are included based on pre-defined criteria and 

not because of results found in the article or familiarity 

with certain authors. This can help to remove some of 

the bias and subjectivity that would result from a less 

systematic review. 

Meta-analysis quantifies results by using effect sizes. 

Effect sizes are a measure of the difference between two 

groups, and in the case of an intervention an effect size 

can be thought of as a measure of the (standardized) 
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difference between the control group and the treatment 

group, thereby providing a measure of the effect of the 

intervention. Effect sizes are not the same as statistically 

significant differences that are typically reported and 

found through various inferential statistics, such as t-tests 

or ANOVAs. For example, a study could have a statistically 

significant finding, but the effect of that difference could 

be minimal. Thus, the effect size allows researchers to 

determine the magnitude of the impact of an intervention, 

not just whether or not the intervention made a difference. 

For example, an effect size of 1.00 would be interpreted 

as a difference of one standard deviation between the 

two groups being compared. Another way of interpreting 

a one standard deviation effect size would be moving a 

student at the 50th percentile before the intervention to 

the 84th percentile after the intervention.

The magnitudes of effect sizes can be categorized into 

different groups. For Cohen (1988), one way to think 

about categorizing effect sizes was that small effect sizes 

(.2 to .3) are those that are barely detectable by the naked 

eye, medium effect sizes (.4 to .6) are those that can be 

detected visually, and large effect sizes (greater than .7) 

are those that could not be missed by a casual observer. It 

is important to remember that effect sizes are dependent 

not just on the mean difference between two groups, but 

also the standard deviation of those groups. For example, 

there is an average height difference between 15- and 16- 

year old girls, but there is a lot of variation within each of 

those age groups, so this would correspond to a relatively 

small effect size. However, when comparing 13- and 

18- year old girls, there is a much larger average height 

difference, and even with a similar amount of variation 

within each age group, this would correspond to a larger 

effect size.

In addition, if the effect size is consistent across a collection 

of articles, then an overall effect size can be estimated 

that is both robust and applicable to the type of studies 

used (Borenstein et al., 2009). Further exploration of 

effects using moderating variables can be performed to 

understand what particular variables contribute to the 

results.

The tools of meta-analysis enable researchers to look 

across a large number of similar studies to determine 

whether certain kinds of interventions have consistent 

effects. This is a powerful kind of analysis that, when 

combined with the systematic nature of a meta-analytic 

review, presents a solid view of the current state of 

research and findings in a field.

Methods
Scope

This meta-analysis is concerned with the effectiveness 

of computer simulations used in instructional settings. 

The scope was limited to simulations in STEM contexts 

or content in order to align with the GLASSLab game 

developers’ objectives. It was also decided to limit analysis 

to only studies with participants in the K–12 grade range 

(although simulations did not need to occur in a formal 

school setting). The results will therefore be applicable 

directly to simulation and curriculum designers working in 

these grade levels. The list of possible outcome measures 

was kept broad at this point to be responsive to what was 

in the literature.

Initial Search

The research team used three well-known and 

comprehensive databases to ensure the search covered 

all the relevant literature and journals: the Education 

Resources Information Center (ERIC) (http://www.eric.

ed.gov/), PsycINFO (http://www.apa.org/psycinfo/), and 

Scopus (http://www.scopus.com/). From discussions 

with a research librarian, we determined that because of 

the overlapping coverage and journal availability, these 

databases should be able to capture nearly all the relevant 

literature on learning simulations. 

To identify as many articles as possible, we performed 

the searches using the title, abstract and keyword or 

descriptor fields in the databases. We decided to keep the 

http://www.eric.ed.gov/
http://www.eric.ed.gov/
http://www.apa.org/psycinfo/
http://www.scopus.com/
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search terms relatively broad in order to capture a large 

number of potential articles but not too broad. Specifically, 

we used the combination of the terms simulation or 

computer simulation along with STEM content terms 

such as science education and mathematics education. 

Searching for simulation alone would have produced 

an order of magnitude more articles than the search we 

ended up with. That volume of articles would have taken 

a prohibitively long time to properly sort through, given 

our resource constraints.

The initial search terms included the STEM domains 

(science, technology, engineering, and mathematics and 

their subtopics, such as biology and chemistry) and 

simulation or computer simulation as primary search terms. 

Other topics, such as 21st century skills were included in 

coding, study categorization, and analysis. For example, 

a study about problem solving in the context of science 

learning would be included in the search because of the 

emphasis on science learning and because the simulation 

features, assessments, and results relating to problem 

solving are reported along with other science content-

related features, assessments, and results.

Only articles published between 1991 and 2012 (inclusive) 

were included in the study. The majority of simulation-

based education research studies were conducted during 

this time, and any studies done before 1991 are likely to 

concern technologies that are out of date and would not 

be helpful to contemporary researchers, educators, and 

designers. Only peer-reviewed journals were included, 

and only articles in those journals (i.e., not editorials). 

The decision to exclude literature such as conference 

proceedings and non-peer-reviewed articles was to 

ensure a high quality of research and keep the pool of 

articles manageable. Additionally, to be included in the 

quantitative meta-analysis portion, studies needed to 

include the relevant quantitative information needed for 

the effect size calculations. 

Method Overview 

Exhibit 1 presents an overview of the search and coding 

process. Overall, 2,392 abstracts were reviewed, resulting 

in full-text retrieval of about 200 primary research studies 

potentially suitable for the analysis. Through a thorough 

review of full-text documents, 133 studies were retained 

for further analysis. Of these, 49 were determined to be 

research articles including either an experimental or 

quasi-experimental design. Of those, 9 were determined to 

contain incomplete or repeated data and were excluded 

from our analysis. The remaining 40 studies yielded 

104 effect sizes, 67 of which were in the achievement 

outcome category, 11 were in the attitudes category, and 

the remaining 26 that fell into other categories (such as 

inquiry skills). 

The sections that follow describe the methods at each 

stage in this process.
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Exhibit 1. Abstract and Article Retrieval and Coding Process

Abstracts and Screened
 for Eligibility

(2,392)

Abstracts Excluded

(1,983)

Abstracts with insufficient Information 
(required full text for decision)

(278)

Abstracts Marked for Inclusion

(131)

Full Text Articles marked for 
Inclusion and Retrieval

(192)

Articles Not Available for Fall Coding 
(waiting for retrieval)

(50)

Articles Identified as RCT 
or Quasi-Experimental

(49)

Articles Identified as Qualitative

(50)

Articles Identified as 
Pre-Experiemntal

(34)

Articles Included in Analysis

(40)

Articles Excluded from Analysis
(incomplete data, repeated data, etc.)

(9)

Article Excluded 
(language, conference proceedings, etc.)

(226)

Articles Available for Fall Coding
and Screened for Study Type

(133)
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Abstract Screening Stage

The abstracts for the 2,392 articles produced from the 

initial search of the databases were collected using the 

citation management program Mendeley2.  The simulation 

meta-analysis team developed an exclusion coding 

scheme, with two team members per article coding each 

abstract. Articles coded for exclusion were assigned to 

one or more exclusion categories (Exhibit 2). Our search 

strategy was to find a large number of articles that met 

certain criteria (e.g., year of publication, source) and then 

exclude individual articles that did not meet our other 

criteria (e.g., research study, interactive simulation) for 

one or more reasons. These exclusion categories further 

defined our search parameters and inclusion criteria.

Specifically, we wanted to look at studies that involved 

students in kindergarten through high school, regardless 

of whether the study took place within a formal learning 

environment. Thus, studies involving students outside the 

K–12 grade range were excluded at the abstract screening 

stage. Because we also needed to check whether the 

simulation described in the study met our definition of 

simulation, many of the exclusion categories dealt with 

this (e.g., not computer based, visualization, game). We also 

2 http://www.mendeley.com

excluded articles that did not describe a research study.3  

Many articles contained descriptive information about 

a simulation but did not present any data or evidence 

that an investigation had been performed, so these were 

excluded for not being research based.

High agreement existed among the coders, with the pairs 

agreeing on 86.1% of the first-round abstract coding. Most 

of the disagreements (66.1%) occurred when coders could 

not agree on the exclusion category or categories. Two 

researchers resolved all the disagreements by reviewing 

the abstracts and discussing the disagreements.

From the review of the abstracts, 131 (5%) of the original 

articles were determined to match all our inclusion criteria 

and appeared to address one or both of the research 

questions. For about 300 (12%) of the articles, information 

in the abstract alone was insufficient for making a 

decision. Full texts of those articles were obtained, and 

two researchers coded them using the same codes as 

for the abstracts. The remaining 83% of the articles were 

excluded for one or more reasons. 

3  Qualitative research methods were included at this stage, 

although the outcomes associated with these methods (such 

as student interviews) were not analyzed for this report.

Exclusion reason 
Number  

of Abstracts
Percentage  
of Abstracts

Not K–12 grade range 946 39.5

Not a research-based article 882 36.9

Simulation is not part of instruction 439 18.4

Does not fit our simulation definition (other) 293 12.2

Review or trend article 119 5.0

Content is not STEM related 119 5.0

Not computer based 96 4.0

Game 63 2.6

Visualization 25 1.0

Note: Abstracts could be coded for more than one exclusion reason.

Exhibit 2. Abstract Screening Results: Exclusions

http://www.mendeley.com
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Article Screening Stage

Once the abstracts were screened, we collected complete 

texts of all the included articles. Simultaneously, the 

research team developed and refined a coding scheme 

for them. The coding scheme captures information about 

the research questions, the research design, the study 

variables, the effect size data, the assessments used, the 

features of the simulations, implementation information, 

and participant information. 

Two members of the team went through the list of the full 

texts, read them, and identified which articles were quasi-

experimental or randomized controlled trials and had 

enough data to be included in the meta-analysis. Inter-

rater agreement for this full-text manuscript inclusion/

exclusion was 94.50% (κ = 0.89). Each of these articles was 

coded by two team members on a subset of the codes 

that were deemed most relevant to the meta-analysis at 

this time. (The list of the articles included at this stage in 

the study is in Appendix A in the full report.)

Codebook Development

The research team developed a set of codes to describe 

the studies (e.g., demographics, methodological study 

features) and their substantive characteristics for use 

in subsequent moderator variable analysis. This was an 

iterative process that entailed identifying an initial set of 

codes with a subset of the articles and then refining and 

creating new codes as the review of articles proceeded. 

The initial codes described features of the articles that we 

wished to capture. All the articles were coded with the 

finalized coding scheme. Some of the codes were applied 

at the article or study level (pertaining to research design 

or location of the study), whereas others were applied at 

the effect size level (pertaining to specific comparisons 

and findings of the studies). The codes fell into six broad 

categories: 

1.  Demographic information (location of study, ages of 

participants, language of instruction)

2.  Study information (research question, STEM topic) 

3.  Methodological information (research design, group 

equivalency, attrition) 

4.  Assessment information (source of assessment, type of 

measures) 

5.  Simulation information (type, collaboration, flexibility, 

platform) 

6.  Implementation information (setting, curriculum, time/

duration/frequency).

The entire codebook with detailed descriptions of each 

code used and its value options is in Appendix B in the 

full report. A sample page from the FileMaker database 

created for coding is in Appendix C in the full report.

Quantification in Meta-Analysis

The basic metric and unit of analysis in a meta-analysis 

is an effect size. The one used in this meta-analysis is a 

d-type effect that expresses the standardized difference 

between the means of two groups. Cohen’s d (Cohen, 

1988) has become the more accepted form of the d-type 

effect size. Cohen’s d is calculated by pooling the standard 

deviations of the experimental and control groups and 

using this new standard deviation as the divisor of the 

mean difference. 

In addition, Hedges & Olkin (1985) introduced a multiplier 

to Cohen’s d that corrects for small-sample bias. This 

adaptation is generally referred to as Hedges’ g. The effect 

sizes of small samples (generally around 40 participants) 

are adjusted downward slightly, while larger samples 

remain unaffected. As a result, most reviewers convert all 

d-type effect sizes to Hedges’ g because it corrects bias 

in small sample studies without affecting larger samples.
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Synthesizing Effect Sizes

Effect sizes are always weighted at the synthesis phase, 

where effect sizes are combined into an overall average. 

There are multiple models to consider at this stage: fixed-

effect, random-effects, and a mixed-effect model.  The 

weights for the fixed-effect model4 and the random-

effects model are different, owing to the theoretical 

definitions of the models (e.g., Borenstein, Hedges, 

Higgins & Rothstein, 2010). We will use the fixed-effect 

model to estimate heterogeneity of k effect sizes (where 

k indicates the number of effect sizes in the synthesis) 

and the random-effects model to estimate the weighted 

average effect size (g+) and the 95th confidence interval 

within which the mean resides.

Fixed-effect model. The underlying assumption of the 

fixed-effect model, where effect sizes are weighted by 

their inverse variance (i.e., W
g(Fixed)

 = 1
V

g

), is that a precise 

fixed average effect size can represent all studies in the 

meta-analysis that are essentially alike in terms of research 

design, treatment definition, outcome measures, and 

sample demographics. There are two primary outcomes 

of a first-level synthesis of a distribution of k effect sizes 

under the fixed-effect model: (1) the average weighted 

effect size of k effect sizes (g+ is the statistical symbol for 

the weighted average) and associated statistics (i.e., 

standard error, variance, the upper and lower limits of the 

95th confidence interval, a z-test and associated 

probability) and (2) heterogeneity assessment and its 

associated test statistics. For heterogeneity analysis, a 

Q-statistic (Cochran’s Q) is created from the squared sum 

of each effect size subtracted from the average effect size. 

The Q-statistic is a sum of squares that is assessed using 

the chi-squared distribution with p – 1 degrees of freedom. 

Failure to reject the null hypothesis leads to the conclusion 

that the distribution is homogeneous (i.e., between-study 

variability does not exceed chance expectations). A 

4  For a full description of these models and their underlying 

assumptions, see Hedges & Olkin (1985), Borenstein, Hedges, 

Higgins and Rothstein (2009), and Pigott (2012),

significant Q-value denotes heterogeneity that exceeds 

the expected level of chance. Higgins and colleagues 

(Higgins, Idson, Freitas, Spiegel, & Molden, 2003) developed 

I2 as a more intuitive measure of heterogeneity. I2 ranges 

from 0.0 to 1.0 and is read as a percentage of between-

study variability contained in total variability. 

Random-effects model. The random-effects model 

is considered most appropriate when studies in the 

meta-analysis differ in terms of methodology, treatment 

definition, demographics, and the like. The inverse variance 

weights include the between-study variance term  

τ2 (i.e. ,                                          ).Studies are not assumed to 

 

be alike except in the sense that they all address the same 

general research question (e.g., the effects of educational 

simulations on learning). Each study is deemed to be a 

random sample from a micropopulation of like studies. 

There is no heterogeneity assessment since all between-

study variability is resolved within each study.

Mixed-effect model. Moderator variable analysis 

involves comparisons between/among levels of coded 

study features and is considered a secondary level of 

comparison. The mixed-effects model is, as the name 

implies, a combination of the characteristics of the fixed 

and random models. Average effects at each level of the 

moderator variable are synthesized using the random-

effects model with τ2  calculated separately for each 

level. Synthesis across levels is performed using the 

fixed-effect model.

W
g(Random)

 = 1
V + τ

g
2
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Results

Research Questions

We identified three outcome measure categories in 

our review of the literature on computer simulations in 

K–12 STEM education: achievement measures, attitude 

measures (both content area related and technology 

related), and inquiry and reasoning skills. Two research 

questions were found in the literature of educational 

simulations related to the three outcome measures:

1.  What is the difference in outcome measures between 

K–12 students who receive simulations as a form of 

instruction and K–12 students who receive some other 

kind of instructional treatment? 

2.  What is the difference in the outcome measures 

between K–12 students who receive simulations 

that are supplemented or modified with some other 

form of instructional treatment (e.g., simulation plus 

scaffolding) and simulations alone? 

Descriptive Results

The 40 articles selected for inclusion in the meta-analysis 

were coded using the definitions and rules in the codebook. 

Some of the variables were included as moderator 

variables, as described below. Others were coded to use as 

descriptive variables to help us better understand the pool 

of articles selected for study (including demographics 

of participants, specific simulation topic, etc.). Exhibits 3 

(study level) and 4 (effect size level) detail the results of 

coding for the pertinent descriptive variables. 

Variable Frequency

Location of study

North America 13

Europe 17

Asia 5

Not indicated 3

STEM domain

Science 33

Mathematics 4

Engineering 2

Technology 1

Grade level of participants

Kindergarten– grade 5 4

Grades 6–8 12

Grades 9–12 23

Multiple ranges 1

Exhibit 3. Descriptive Results at Study Level (40 Studies)
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The 40 studies were found to contain 104 effect sizes 

for the purposes of this meta-analysis. Each effect size 

represents a study’s comparison that falls under one 

of the two research questions and one of the outcome 

measures. A single article could have multiple effect sizes 

if it reported multiple outcomes for a single control/

treatment comparison or if multiple groups were being 

compared on a single outcome (e.g., in a factorial design). 

Inter-rater agreement for effect size identification and 

calculation (i.e., accuracy of data extraction and selection 

and application of equations) was 95.50% (κ = 0.97). 

Research Question

Variable
1: Simulation vs. 

No Simulation
(k = 59) 

2: Simulation Plus 
Enhancement vs.  Simulation 

Alone   (k = 45)

Outcome measures

Achievement 36 31

Attitude 10 1

Other (reasoning, inquiry, etc.) 13 13

Simulation type

Phenomenon simulation 16 23

Virtual lab 15 18

Agent based 4 0

Virtual world 0 0

Other 3 4

Not Indicated 21 0

Assessment delivery mode

Embedded in simulation 1 7

Tech based but not embedded 1 7

Not tech based 53 17

Not indicated 4 14

Assessment source

Researcher designed 45 39

Teacher designed 5 1

District, state, or national test 4 0

Other standardized test 0 4

Curriculum test 0 0

Not Indicated 5 1

Exhibit 4. Descriptive Results at Effect Size Level (104 Effect Sizes)
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Meta-Analysis Results

Publication Bias and Outlier Analysis

We investigated potential publication bias by inspecting 

funnel plots (i.e., effect size by standard error) and 

through the use of statistical tools that are resident in 

Comprehensive Meta-Analysis™ (CMA, Version, 2.2057, 

Borenstein et al., 2010). We found no serious publication 

bias in achievement outcomes (i.e., potential studies that 

were not located). For attitude outcomes, however, the 

distribution appeared bimodal, suggesting that possibly 

attitudes toward instruction and attitudes toward content 

were mixed in this collection. Nonetheless, the number of 

effect sizes (k = 11) was deemed too small to bifurcate the 

collection.

We used the “one study removed procedure” resident in 

CMA to investigate potentially outlying effect sizes. As a 

result, one very large effect size (g = +4.57) was reduced 

to the next highest effect size of 2.10.

Methodological Quality

Seven methodological characteristics were identified, coded, and tested to determine whether the collection of studies 

contained systematic bias due to the methods the primary researchers used that might alter the interpretation of results. 

In the cases of the variables with asterisks in the following list, the number of studies was reduced from k = 67 because 

of missing data (see variables below for final numbers): 

•  Research design – Randomized controlled trials (g+ = 0.59, k = 14) vs. quasi-experimental designs (g+ = 0.47, k = 53), 

Q
Between

 = 0.42, df = 1, p = .52, NSD5

•  Methods of effect size extraction – Exact descriptive statistics (g+ = 0.66, k = 29) vs. estimated from inferential statistics 

(g+ = 0.35, k = 34) vs. reported by researcher (g+ = 0.69, k = 4), Q
Between

 = 6.76, df = 2, p = .03, SD

•  Instructor equivalence* – Same instructor (g+ = 0.74, k = 14) vs. different instructor (g+ = 0.55, k = 25),  

Q
Between

 = 0.85, df = 1, p = .36, NSD

•  Material equivalence* – Same materials (g+ = 0.47, k = 42) vs. different materials (g+ = 0.40, k = 17),  

Q
Between

 = 0.23, df = 1, p = .63, NSD

•  Time-on-task (TOT) equivalence* – Same TOT (g+ = 0.46, k = 46) vs. different TOT (g+ = 0.39, k = 10),  

Q
Between

 = 0.15, df = 1, p = .70, NSD

•  Source of outcome measure* – Standardized state, national or district (g+ = 0.74, k = 4) vs. other standardized  

(g+ = 0.67, k = 4) vs. researcher made (g+ = 0.44, k = 49) vs. teacher made (g+ = 0.57, k = 4),  

Q
Between

 = 4.73, df = 3, p = .19, NSD.

Except for methods of effect size extraction, all the methodological moderator variables were uniform across levels. We 

concluded that there was no severe bias due to the research practices in the collection.

5 NSD = No significant difference at the a = 0.05 level.
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Overall Effects by Category of Outcome 
Measure and Research Question

Exhibit 5 presents average effect sizes for the outcome 

categories of achievement, attitude, and scientific inquiry 

and reasoning skills separately for each research question. 

All average effects were positive and significantly 

different from zero. The random-effects model analyses 

of achievement outcomes produced an average effect 

g+ = 0.67 (k = 36) for Research Question 1, suggesting a 

moderate to strong (Cohen, 1988) positive influence of 

simulation-based instructional interventions compared 

with non-simulation-based methods of instruction  

(17% increase of the average treatment over the control 

group). This average effect was higher than the average 

effect on achievement outcomes (g+ = 0.31, k = 31) of 

enhanced simulations compared with simulations alone 

(Research Question 2). Fixed-model analyses showed that 

both average effects were significantly heterogeneous  

(Q
T
 = 98.47 and Q

T
 = 129.18, respectively, p < .001), 

warranting further exploration of variability through 

moderator variable analyses. 

Attitude data for Research Question 1 produced an 

average effect size of g+ = 0.87 (k = 10) that is significantly 

heterogeneous (Q
T
 = 141.07, p < .001). The single effect 

size for Research Question 1 in this outcome category  

(g = -1.22) did not allow for further interpretation. Also, we 

did not conduct heterogeneity analyses or subsequent 

moderator variable analyses on effect sizes in the outcome 

Variable k g+ Lower 95th Upper 95th

Achievement

Question 1: 

Simulation vs. no simulation
36 0.67 0.51 0.82

Heterogeneity (fixed-effect model) Q
T
 = 98.47 df = 35 p < .001 I2 = 64.46

Question 2: 

Simulation plus enhancement vs. simulation alone
31 0.31 0.12 0.49

Heterogeneity (fixed-effect model) Q
T
 = 129.18 df = 30 p < .001 I2 = 76.78

Attitudes

Question 1: 

Simulation vs. no simulation
10 0.87 0.12 1.61

Heterogeneity (fixed-effect model) Q
T
 = 141.07 df = 9 p < .001 I2 = 93.62

Question 2: 

Simulation plus enhancement vs. simulation alone
1 –1.22 (Not part of the comparison)

Heterogeneity (fixed-effect model) N/A N/A N/A N/A

Inquiry and reasoning skills

Question 1: 

Simulation vs. no simulation

5 (all from 2 

studies)
0.20 -0.15 +0.56

Heterogeneity (fixed-effect model) QT = 7.47 df = 4 p = .11 I2 = 46.44

Question 2: 

Simulation plus enhancement vs. simulation alone

4 (all from 1 

study)
0.60 0.35 0.85

Heterogeneity (fixed-effect model) Q
T
 = 3.07 df = 3 p = .38 I2 = 2.36

Exhibit 5. Overall Effects by Category of Outcome Measure and Research Question
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category of scientific inquiry and reasoning skills for 

either research question because all nine effect sizes were 

derived from only three primary studies (from a single 

study for Research Question 2). However, the average 

effect sizes in this outcome category were positive  

(i.e., g+ = 0.20, k = 5 for Research Question 1 and g+ = 0.60, 

k = 4, for Research Question 2, with only the latter being 

statistically significant). 

Forest plots of the Hedges’ g effect size, confidence 

interval, and weight of each of the included studies for 

the research questions (both achievement and attitude 

outcomes) are in the full report.

Demographic and Instructional  
Moderator Variable Analysis

Achievement outcomes for Question 1. The analyses of 

demographic moderator variables for Research Question 1 

showed that effects were not significantly different across 

grade levels (Q
B
 = 0.11, p > .05), although effect sizes for the 

STEM content area domain varied significantly (Q
B
= 13.42, 

p < .001). This was particularly true for the science content 

area, producing a strong significant effect of g+ = 0.67,  

k = 33. The effect of simulation use in teaching mathematics 

was not significantly different from zero. This finding 

should be viewed with extreme caution, however, because 

the mathematics data were based on only two effect sizes. 

Due to these low numbers, additional searching with 

alternate keywords (such as “linked representations”) was 

done and more mathematics articles will be part of the 

final analysis and report. 

The findings for instructional moderator variables  

(Exhibit 6) portrayed particular characteristics of the 

experimental intervention only. None of these analyses 

revealed significant differences among effect sizes at 

different levels of the instructional moderator variables.   

Variable k g+ Lower 95th Upper 95th
Q

B
 (df, p) 

Conclusion

Simulation Type*

Virtual lab 9 0.85 0.53 1.18

Phenomenon simulation 15 0.57 0.34 0.79

Agent based 4 0.74 0.50 0.98

Q-between 2.29 (2, .32), NSD

Group work*

Individual 8 0.78 0.56 0.99

Dyads 10 0.53 0.15 0.91

Small groups (> 2) 9 0.88 0.52 1.24

Q-between 1.86 (2, .39), NSD

Post hoc: Individual vs. dyads 1.25 (1, .26), NSD

Post hoc: Dyads vs. small groups 1.73 (1, .19), NSD

Assessment delivery model*

Not by technology 33 0.68 0.51 0.84

Technology, but not embedded 1 0.65 Not part of the comparison

Q-between N/A

* “Not reported” and “Other” data removed.

Exhibit 6. Instructional Variables Related to the Simulation Treatment for Question 1
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Achievement outcomes for Question 2. The effects of 

simulation plus enhancement across grade levels were not 

significantly different (Q
B
 = 2.68, p > .05), but within STEM 

domains the average effect for instruction in mathematics 

was negative and significantly different from average 

effect sizes for science and engineering (Exhibit 7). Also, 

average effect sizes did not vary significantly across any 

level of the instructional moderator variables (Exhibit 8). 

Variable k g+ Lower 95th Upper 95th tt

Grade range

Kindergarten–grade 5 2 0.31 0.01 0.62

Grades 6–8 10 0.43 0.09 0.76

Grades 9–12 17 0.18 -0.09 0.45

Multiple ranges 2 0.75 -0.01 1.52

Q-between 2.68 (3, .44), NSD

STEM domain

Science 22 0.43 0.24 0.63

Math 7 -0.33 -0.76 0.09

Engineering 2 0.75 -0.01 1.52

Q-between 11.52 (2, .003), SD

Exhibit 7. Demographic Moderator Variables Related to the Simulation Plus Treatment Condition for Question 2

Variable k g+ Lower 95th* Upper 95th*
Q

B
 (df, p) 

Conclusion

Simulation type*

Virtual lab 13 0.53 0.30 0.76

Phenomenon simulation 15 0.21 -0.03 0.46

Q-between 3.36 (1, .07), NSD

Group work*

Individual 17 0.19 -0.06 0.44

Dyads 5 0.36 -0.08 0.79

Small groups (> 2) 5 0.43 -0.19 1.05

Q-between 0.79 (2, .67), NSD

Assessment delivery model*

Not by technology 17 0.32 0.06 0.58

Technology, but not embedded 5 0.53 0.15 0.90

Q-between 0.79 (1, .38), NSD

* “Not reported” and “Other” data removed.

Exhibit 8. Instructional Moderator Variables Related to the Simulation Plus Treatment for Question 2
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Discussion of  
Current Results
These initial findings indicate that simulations have 

promise for improving students’ learning outcomes 

in STEM topics. Although further analysis is required 

both with these studies and the qualitative and pre-

experimental studies identified in the literature search, 

many high- level findings can be discussed.

The between-study variability across all outcomes and 

research questions tended to exceed what would be 

expected by chance sampling. This suggests that to 

perform appropriate analyses on the effects of simulations 

on learning, separating the different outcome measures 

and research questions was necessary. The results are 

presented at this level. Conflating multiple research 

questions or outcomes would lead to inappropriate 

conclusions. Although the average effect sizes were 

positive in each of the groupings, the nature of the effects 

was slightly different for the different types of studies and 

outcomes and therefore should not be directly compared.

Simulation treatments were shown to have an advantage 

in learning achievement over non-simulation instruction. 

Many prior literature reviews had reached a similar 

conclusion, so this is not a surprise. However, this meta-

analysis was able to quantify the magnitude of average 

improvement due to simulations and look at specific 

moderator variables. The results showed that no 

significant differences existed across the K–12 age groups 

included in this study. Nor were significant differences 

found across different types of simulations or across 

group size (individual vs. dyads vs. small groups). It seems 

clear that simulations, in many different configurations 

or contexts within the classroom, do improve student 

science learning compared with not using simulations. 

Other STEM disciplines were underrepresented in this 

study because of the lack of articles meeting our criteria 

in engineering, 6 technology, and mathematics. 

We also found advantages of simulation treatment in 

improving student attitudes using simulations. Because 

this analysis combined different types of attitudes 

(content related and technology related), however, the 

small number of quantitative studies including attitude 

measures precludes drawing many conclusions based on 

this result.

Simulations supplemented or modified with some 

other form of instructional treatment (e.g., simulation 

plus scaffolding) provided modest improvements in 

learning achievement over simulations alone. Many 

different modifications or enhancements were used in 

the 31 studies analyzed. The types of modifications did 

cluster in a few general areas, specifically, scaffolding, 

representations, haptic feedback (feedback involving 

touch), and cooperative learning. A preliminary finding 

based on these categories of modifications showed that 

scaffolding within a simulation had a strong positive effect, 

as did cooperative learning, whereas representations had 

a more mixed overall effect. Further analysis of these 

studies will be conducted in 2013. We found no significant 

differences across age groups, simulation type, or group 

size. There was, however, a significant difference across 

STEM domains, with mathematics simulations having 

a much lower g+ than either science or engineering 

simulations. A comparison based on attitude outcomes 

for simulations supplemented or modified with some 

other instructional treatment was not possible because 

there was only one effect size in this category.

This study had limitations, some of which will be 

addressed in the coming months of work. One concerned 

certain moderator variables and lack of coder agreement. 

6  There were many studies involving engineering education, 

but they were excluded because they used college-age or 

older students. A follow-up project could examine studies 

with these older students if engineering education is an 

important area of interest.
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The variables relating to the length and duration of the 

treatments mentioned in the studies were particularly 

difficult for researchers to code reliably. There is no 

standard way of reporting this type of data, and the 

researchers had to make many judgments that did not 

always align. As this seems to be an important variable to 

examine, we will address this as this analysis continues. 

Other variables of interest are those relating to specific 

features of the simulations in these studies. As we read 

through and coded the abstracts and articles, we noted 

that not as much information was given about the 

simulations as would be required to code for certain 

simulation features as moderator variables. We noticed 

that articles that did contain this type of information 

typically did not also include any kind of research or 

study and were therefore excluded from the systematic 

review at either the abstract or article stage. Articles with 

study details and outcome measures typically did not 

have as many details about the design or features of the 

simulation. Additionally, articles on some simulations that 

were commonly used (such as NetLogo) might not contain 

as many details because they are taken as known. One of 

our tasks for the coming months is to try to follow up with 

study authors either directly or through other articles 

to seek more information about the specific features of 

these simulations.

The lack of mathematics, technology, and engineering 

simulation studies was surprising. The engineering 

problem can be solved by simply including studies 

involving college-age students. Current work underway 

includes coding and analyzing a new batch of articles 

on mathematics simulations that were found using 

alternate keywords (e.g., linked representations instead of 

simulation). 

As this analysis continues, more information will be 

uncovered about how simulations can improve student 

learning as well as more details about what instructional 

contexts and features are most beneficial to students.
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